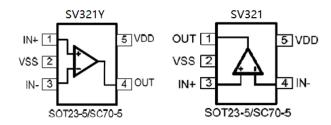


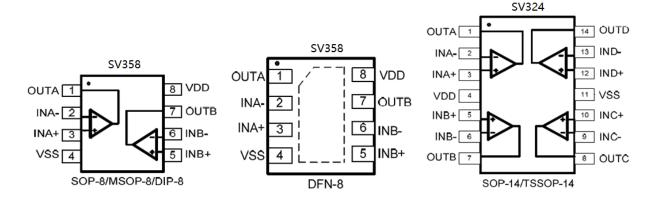
SV321 358 324

www.si-soft.cn

### **Description**

The SV321 family have a high gainbandwidth product of 1MHz, a slew rate of  $0.6V/\mu S$ , and a quiescent current of  $40 \mu A$ /amplifier at 5V. The SV321 family is designed to provide optimal performance in low voltage and low noise systems. They provide rail-torail output swing into heavy loads. The input common mode voltage range includes ground, and the maximum input offset voltage is 3.5mV for SV321 family. They are specified over the extended industrial temperature range (-40°C to +125°C). The operating range is from 2.1V to 5.5V. The SV321 single is available in Green SC70-5 and SOT-23-5 packages. The SV358 Dual is available in Green SOIC-8, MSOP-8, DIP-8 and DFN-8 packages. The SV324 Quad is available in Green SOP-14 and TSSOP-14 packages.


### **Applications**


- ASIC Input or Output Amplifier
- Sensor Interface
- Medical Communication
- Smoke Detectors
- Audio Output
- Piezoelectric Transducer Amplifier
- Medical Instrumentation
- Portable Systems

#### **Features**

- Single-Supply Operation from +2.1V ~ +5.5V
- Rail-to-Rail Input / Output
- Gain-Bandwidth Product: 1MHz (Typ.)
- Low Input Bias Current: 1pA (Typ.)
- Low Offset Voltage: 3.5mV (Max.)
- Quiescent Current:
   40µA per Amplifier (Typ.)
- Operating Temperature: -40°C ~ +125°C
- Embedded RF Anti-EMI Filter
  - Small Package:
    SV321 Available in SOT23-5 and SC70-5
    Packages
    SV358 Available in SOIC-8, MSOP-8,
    DIP-8 and DFN-8 Packages
    SV324 Available in SOP-14 and TSSOP-14
    Packages

## **Pin Configuration**



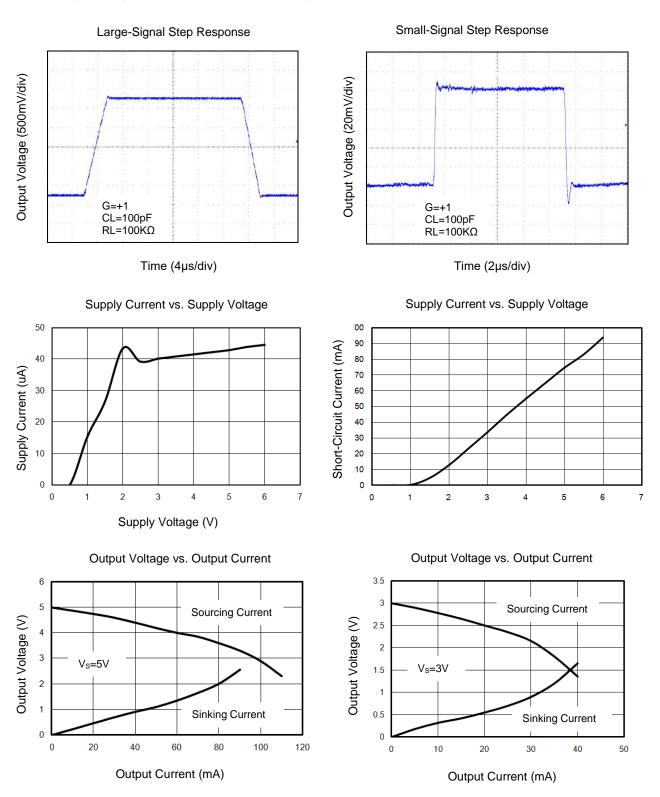


## **Absolute Maximum Ratings**

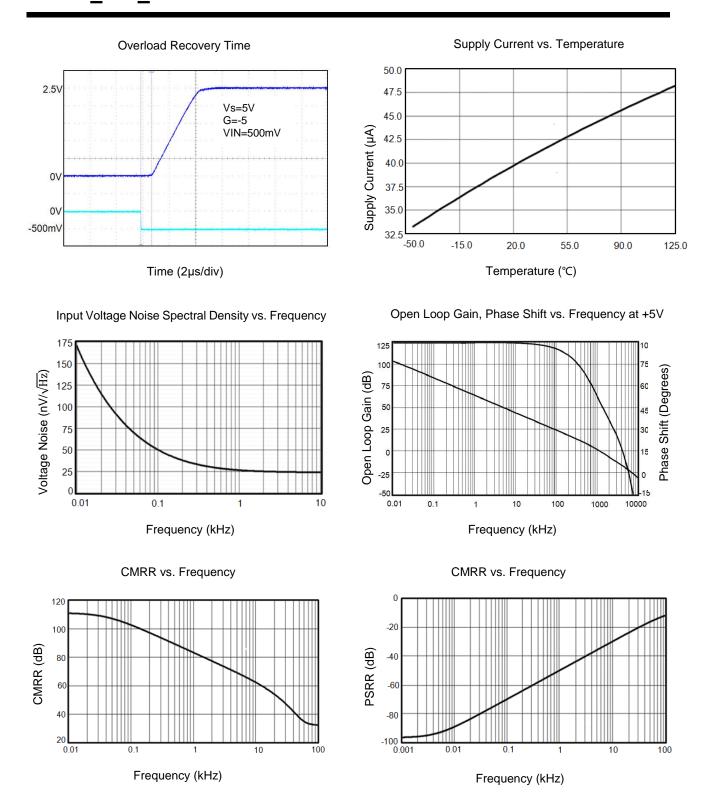
| Condition                             | Min                   | Max                   |  |  |  |  |
|---------------------------------------|-----------------------|-----------------------|--|--|--|--|
| Power Supply Voltage (VDD to Vss)     | -0.5V                 | +7.5V                 |  |  |  |  |
| Analog Input Voltage (IN+ or IN-)     | V <sub>ss</sub> -0.5V | V <sub>DD</sub> +0.5V |  |  |  |  |
| Operating Temperature Range           | Vss-0.5V              | +7V                   |  |  |  |  |
| lunction Temperature -40°C            |                       | +125°C                |  |  |  |  |
| Storage Temperature Range             | -0.7~7                | V                     |  |  |  |  |
| Lead Temperature (soldering, 10sec)   | +160°C                |                       |  |  |  |  |
| Package Thermal Resistance (TA=+25°C) |                       |                       |  |  |  |  |
| SOP-8, θ <sub>JA</sub>                | 125°C/W               |                       |  |  |  |  |
| MSOP-8, θ <sub>JA</sub>               | 216°C/W               |                       |  |  |  |  |
| SOT23-5, θ <sub>JA</sub>              | 190°C/W               |                       |  |  |  |  |
| SC70-5, θ <sub>JA</sub>               | 333°C/W               |                       |  |  |  |  |
| ESD Susceptibility                    |                       |                       |  |  |  |  |
| НВМ                                   | 6KV                   |                       |  |  |  |  |
| MM                                    | 300V                  |                       |  |  |  |  |

Note: Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions outside those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## **Package/Ordering Information**


| MODEL | CHANNEL | ORDER<br>NUMBER                | PACKAGE<br>DESCRIPTION | PACKAGE<br>OPTION  | MARKING<br>INFORMATION |  |
|-------|---------|--------------------------------|------------------------|--------------------|------------------------|--|
| SV321 | Single  | SV321-CR                       | SC70-5                 | Tape and Reel,3000 | 321                    |  |
|       |         | SV321-TR                       | SOT23-5                | Tape and Reel,3000 | 321                    |  |
|       |         | SV321Y-CR                      | SC70-5                 | Tape and Reel,3000 | 321Y                   |  |
|       |         | SV321Y-TR                      | SOT23-5                | Tape and Reel,3000 | 321Y                   |  |
| SV358 | Dual    | SV358-SR                       | SOP-8                  | Tape and Reel,4000 | SV358                  |  |
|       |         | SV358-MR                       | MSOP-8                 | Tape and Reel,3000 | SV358                  |  |
|       |         | SV358-DR DIP-8 20Tube(1000pcs) |                        | SV358              |                        |  |
|       |         | SV358-FR                       | DFN-8                  | Tape and Reel,3000 | SV358                  |  |
| SV324 | Quad    | SV324-TR                       | TSSOP-14               | Tape and Reel,3000 | SV324                  |  |
|       |         | SV324-SR                       | SOP-14                 | Tape and Reel,2500 | SV324                  |  |

# **Electrical Characteristics**


|                                | SYMBOL     | CONDITIONS                                        | SV321/358/324                |       |             |        |         |
|--------------------------------|------------|---------------------------------------------------|------------------------------|-------|-------------|--------|---------|
| PARAMETER                      |            |                                                   | TYP MIN/MAX OVER TEMPERATURE |       |             |        |         |
|                                |            |                                                   | +25℃                         | +25℃  | -40°C~+85°C | UNITS  | MIN/MAX |
| INPUT CHARACTERISTICS          |            |                                                   |                              |       |             |        |         |
| Input Offset Voltage           | Vos        | Vcm = Vs/2                                        | 0.4                          | 3.5   | 5.6         | mV     | MAX     |
| Input Bias Current             | Ів         |                                                   | 1                            |       |             | pА     | TYP     |
| Input Offset Current           | los        |                                                   | 1                            |       |             | pА     | TYP     |
| Common-Mode Voltage Range      | Vсм        | Vs = 5.5V                                         | -0.1~ +5.6                   |       |             | V      | TYP     |
| Common-Mode Rejection Ratio    | 01400      | Vs = 5.5V, V <sub>CM</sub> = -0.1V to 4V          | 70                           | 62    | 62          | dB     | MIN     |
|                                | CMRR       | Vs = 5.5V, V <sub>CM</sub> = -0.1V to 5.6V        | 68                           | 56    | 55          |        |         |
| Open-Loop Voltage Gain         | _          | $R_L = 5k\Omega$ , $V_0 = +0.1V$ to $+4.9V$       | 80                           | 70    | 70          | dB I   |         |
|                                | Aol        | $R_L = 100k\Omega$ , $V_O = +0.035V$ to $+4.965V$ | 100                          | 90    | 85          |        | MIN     |
| Input Offset Voltage Drift     | ΔVos/Δτ    |                                                   | 2.7                          |       |             | μV/°C  | TYP     |
| OUTPUT CHARACTERISTICS         |            |                                                   |                              |       |             |        |         |
| Output Voltage Swing from Rail | Vон        | R <sub>L</sub> = 100kΩ                            | 4.997                        | 4.990 | 4.980       | V      | MIN     |
|                                | Vol        | RL = 100kΩ                                        | 3                            | 10    | 20          | mV     | MAX     |
|                                | Vон        | R <sub>L</sub> = 10kΩ                             | 4.992                        | 4.970 | 4.960       | V      | MIN     |
|                                | Vol        | R <sub>L</sub> = 10kΩ                             | 8                            | 30    | 40          | mV     | MAX     |
|                                | Isource    | R <sub>L</sub> = 10Ω to Vs/2                      | 84                           | 60    | 45          | mA     | MIN     |
| Output Current                 | Isink      |                                                   | 75                           | 60    | 45          |        |         |
| POWER SUPPLY                   |            |                                                   |                              |       |             |        |         |
| 0 6 77 15 15                   |            |                                                   |                              | 2.1   | 2.5         | V      | MIN     |
| Operating Voltage Range        |            |                                                   |                              | 5.5   | 5.5         | V      | MAX     |
| Power Supply Rejection Ratio   | PSRR       | Vs = +2.5V to +5.5V, VcM = +0.5V                  | 82                           | 60    | 58          | dB     | MIN     |
| Quiescent Current / Amplifier  | lα         |                                                   | 40                           | 60    | 80          | μΑ     | MAX     |
| DYNAMIC PERFORMANCE (CL =      | 100pF)     |                                                   |                              |       |             |        |         |
| Gain-Bandwidth Product         | GBP        |                                                   | 1                            |       |             | MHz    | TYP     |
| Slew Rate                      | SR         | G = +1, 2V Output Step                            | 0.6                          |       |             | V/µs   | TYP     |
| Settling Time to 0.1%          | ts         | G = +1, 2V Output Step                            | 5                            |       |             | μs     | TYP     |
| Overload Recovery Time         |            | V <sub>IN</sub> ·Gain = V <sub>S</sub>            | 2.6                          |       |             | μs     | TYP     |
| NOISE PERFORMANCE              |            |                                                   |                              |       |             |        |         |
| With Miles Street              | <b>e</b> n | f = 1kHz                                          | 27                           |       |             | nV/√Hz | TYP     |
| Voltage Noise Density          |            | f = 10kHz                                         | 20                           |       |             | nV/√Hz | TYP     |

## **Typical Performance characteristics**

At  $T_A=+25$ <sub>o</sub>C,  $V_S=+5V$ , and  $R_L=100K\Omega$  connected to  $V_S/2$ , unless otherwise noted.



http://www.si-soft.cn/ REV: 0.1 4 / 11



## **Application Note**

#### **Size**

SV321 family series op amps are unity-gain stable and suitable for a wide range of general-

purpose applications. The small footprints of the SV321 family packages save space on printed circuit boards and enable the design of smaller electronic products.

#### **Power Supply Bypassing and Board Layout**

SV321 family series operates from a single 2.1V to 5.5V supply or dual  $\pm 1.05$ V to  $\pm 2.75$ V supplies. For best performance, a  $0.1\mu$ F ceramic capacitor should be placed close to the VDD pin in single supply operation. For dual supply operation, both VDD and VSS supplies should be bypassed to ground with separate  $0.1\mu$ F ceramic capacitors.

#### **Low Supply Current**

The low supply current (typical 40uA per channel) of SV321 family will help to maximize battery life. They are ideal for battery powered systems.

#### **Operating Voltage**

SV321 family operates under wide input supply voltage (2.1V to 5.5V). In addition, all temperature specifications apply from  $-40\,^{\circ}\text{C}$  to  $+125\,^{\circ}\text{C}$ . Most behavior remains unchanged throughout the full operating voltage range. These guarantees ensure operation throughout the single Li-lon battery lifetime.

#### **Rail-to-Rail Input**

The input common-mode range of SV321 family extends 100mV beyond the supply rails ( $V_{ss}$ -0.1V to  $V_{DD}$ +0.1V). This is achieved by using complementary input stage. For normal operation, inputs should be limited to this range.

### **Rail-to-Rail Output**

Rail-to-Rail output swing provides maximum possible dynamic range at the output. This is particularly important when operating in low supply voltages. The output voltage of SV321 family can typically swing to less than 5mV from supply rail in light resistive loads (>100k $\Omega$ ), and 30mV of supply rail in moderate resistive loads (10k $\Omega$ ).

### **Capacitive Load Tolerance**

The SV321 family is optimized for bandwidth and speed, not for driving capacitive loads. Output capacitance will create a pole in the amplifier's feedback path, leading to excessive peaking and potential oscillation. If dealing with load capacitance is a requirement of the application, the two strategies to consider are (1) using a small resistor in series with the

amplifier's output and the load capacitance and (2) reducing the bandwidth of the amplifier's feedback loop by increasing the overall noise gain. Figure 2. shows a unity gain follower using the series resistor strategy. The resistor isolates the output from the capacitance and, more importantly, creates a

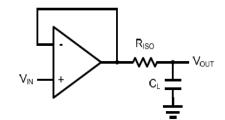



Figure 2. Indirectly Driving a Capacitive Load Using Isolation Resistor

SV321\_358\_324

zero in the feedback path that compensates for the pole created by the output capacitance. The

bigger the R<sub>ISO</sub> resistor value, the more stable V<sub>OUT</sub> will be. However, if there is a resistive load R<sub>L</sub> in parallel with the capacitive load, a voltage divider (proportional to R<sub>ISO</sub>/R<sub>L</sub>) is formed, this will result in a gain error. The circuit in *Figure 3* is an improvement to the one in *Figure 2*. R<sub>F</sub> provides the DC accuracy by feed-forward the V<sub>IN</sub> to R<sub>L</sub>. C<sub>F</sub> and R<sub>ISO</sub> serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the

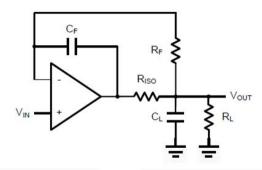



Figure 3. Indirectly Driving a Capacitive Load with DC Accuracy

amplifier's inverting input, thereby preserving the phase margin in the overall feedback loop. Capacitive drive can be increased by increasing the value of  $C_F$ . This in turn will slow down the pulse response.

### **Typical Application Circuits**

#### **Differential amplifier**

The differential amplifier allows the subtraction of two input voltages or cancellation of a signal common the two inputs. It is useful as a computational amplifier in making a differential to single-end conversion or in rejecting a common mode signal. Figure 4. shown the differential amplifier using SV321 family.

$$V_{OUT} = (\frac{R1+R2}{R3+R4})\frac{R4}{R1}V_{IN} - \frac{R4}{R1}V_{IP} + (\frac{R1+R2}{R3+R4})\frac{R3}{R1}V_{REF}$$

If the resistor ratios are equal (i.e.  $R_1=R_3$  and  $R_2=R_4$ ), then

$$V_{OUT} = \frac{R2}{R1}(V_{IP} - V_{IN}) + V_{REF}$$

#### **Low Pass Active Filter**

The low pass active filter is shown in Figure 5. The DC gain is defined by  $-R_2/R_1$ . The filter has a -20dB/decade roll-off after its corner frequency  $f_c=1/(2\pi R_3C_1)$ .

### Instrumentation Amplifier

The triple SV321 family can be used to build a three-opamp instrumentation amplifier as shown in Figure 6. The amplifier in Figure 6 is a high input impedance differential amplifier with gain of  $R_2/R_1$ . The two differential voltage followers assure the high input impedance of the amplifier.

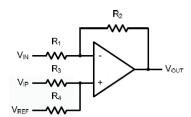



Figure 4. Differential Amplifier

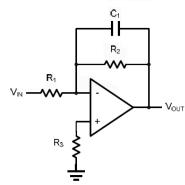
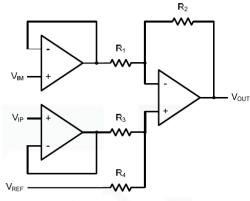
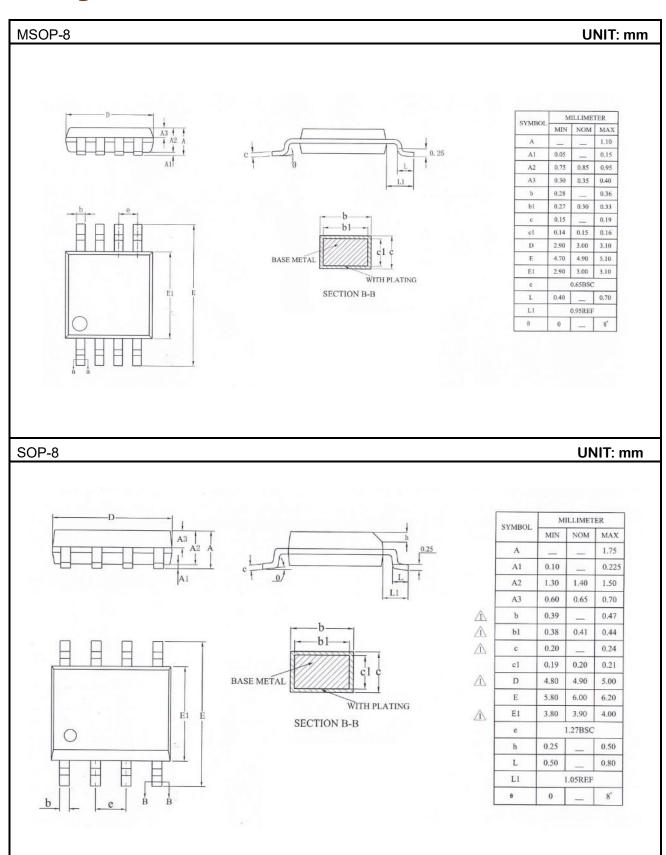
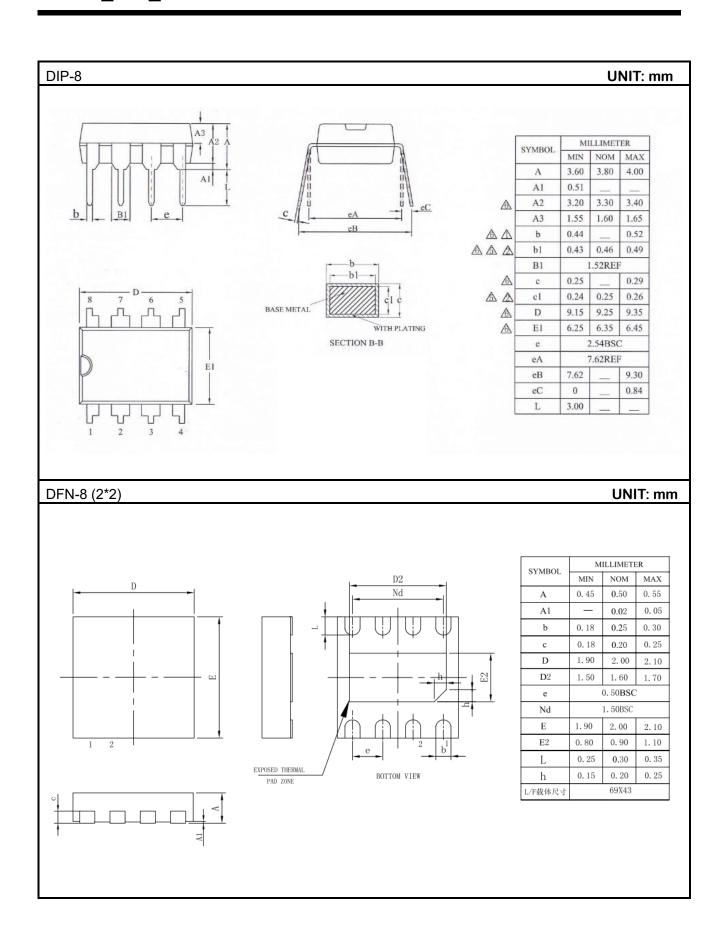
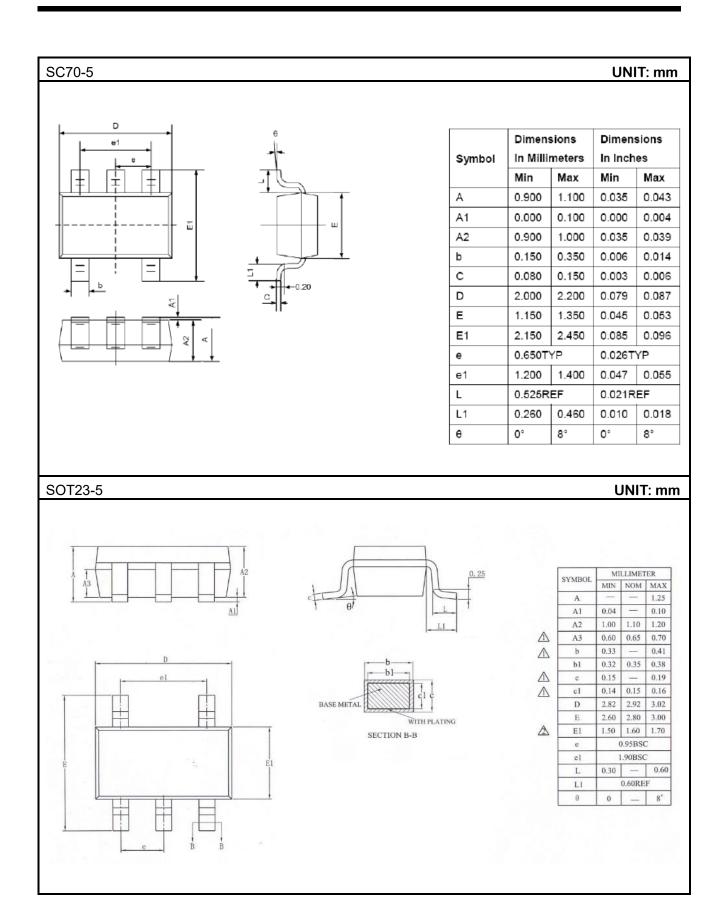
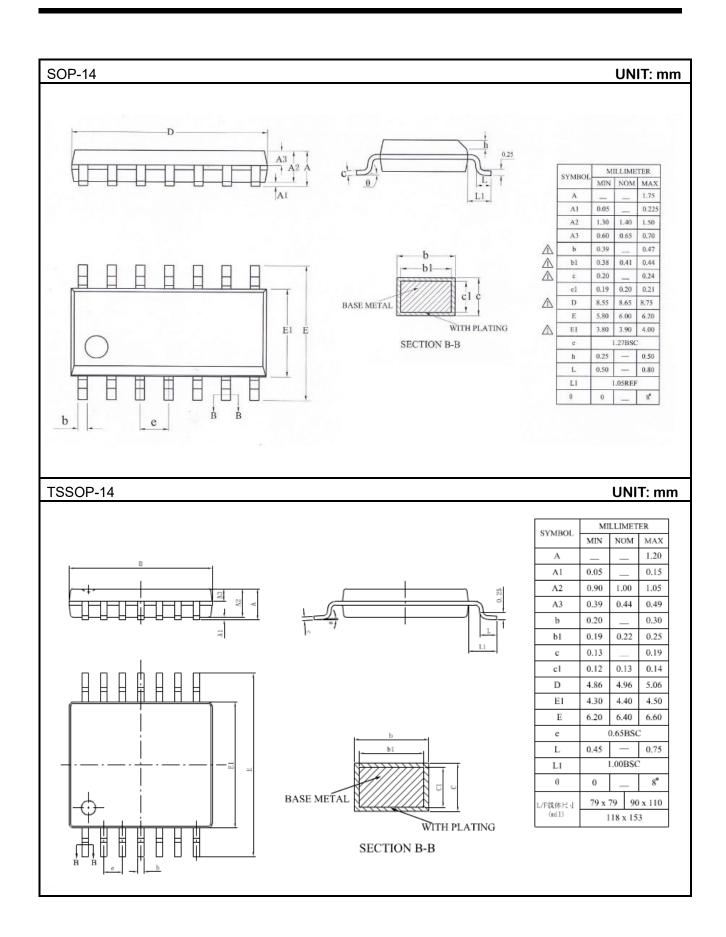



Figure 5. Low Pass Active Filter



Figure 6. Instrument Amplifier

# **Package Information**







