

SD3505

www.si-soft.cn

据试

SD3505 是一款输入耐压超过 40V,在 6V~32V 输入电压条件下正常工作,并且能够实现精确恒压以 及恒流的同步降压型 DC-DC 转换器。

SD3505内部集成USB端口快速充电协议控制器,能够智能识别多种快速充电协议,对手机等受电设备进行快速充电。根据受电设备发送的电压请求能够精确的调整输出电压,从而实现快速充电。

SD3505支持QC2.0, QC3.0, FCP, AFC, BC1.2, APPLE等多种快充协议。输出电压范围3.6V~12V。

SD3505 提供一个 LED 引脚作为输出状态指示: 无电压输出时, LED 处于熄灭状态; 默认输出为 5V 且无负载时处于微亮状态; 当手机进入 9V 或者 12V 快充时 LED 进入高亮状态; 在 5V 输出时, LED 还可 作为充满指示(当负载电流大于 130mA 时高亮, 小 于 130mA 时微亮, 无电压输出时熄灭)。

SD3505 内部集成 110mΩ 的上管和 65mΩ 的下管,支持 99%占空比,可连续输出 5V/3.3A、9V/2.5A、12V/2A。系统最高转换效率可达 97%。

SD3505 无需外部补偿,可以依靠自身内置稳定 环路实现恒流以及恒压控制,同时具备线缆压降补偿 功能。

SD3505 固定 3.5A 限流,外部最少仅需 5 个元件即可构成完整的降压系统。

SD3505 具备输入过压保护功能,当输入电压超过 32V 时,芯片进入关断模式,此时芯片可耐受超过 40V 的输入电压。SD3505 有输出短路保护功能,当输出被短路时,芯片进入关断状态,待机功耗降为70uA,当短路故障解除并移除负载后,自动恢复输出。

SD3505 特有的热保护功能: 当芯片温度升高到 150℃时,进入恒温模式,自动降低输出功率,减小发热,维持 150℃工作结温,如果温度不能控制,继续上升到 160℃,则关断输出,当温度下降到 120℃时,芯片又恢复工作。

SD3505 同时还具备输入欠压保护,输出过流保护,输出过压保护,具有极高的可靠性。

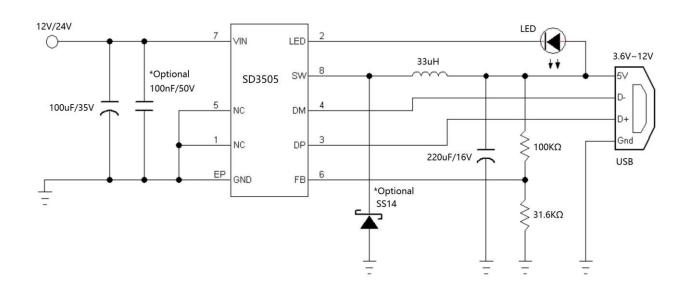
SD3505 提供 ESOP-8L 封装。

特点

- 6V~32V 工作电压范围
- 输入耐压高达 40V
- 3.3A 连续输出电流
- 高达 97%的输出效率
- CC/CV 控制
- 140KHz/340KHz 开关频率可选
- 内置线缆压降补偿
- 内置软启动
- 内置充满转灯指示功能
- 支持 99%占空比
- 无需外部补偿
- 外部最少仅需要 5 个元件
- ±1.5%恒压精度
- ±5%恒流精度
- 支持 DCP 协议(BC1.2, APPLE 2.4A)
- 支持快充协议(QC2.0, QC3.0, FCP, AFC)
- 短路保护(SCP)
- 欠压保护(UVLO)
- 过流保护(OCP)
- 过压保护(OVP)
- 过热保护(OTP)
- 5KV ESD 能力(HBM)
- ESOP-8L 封装形式

放用

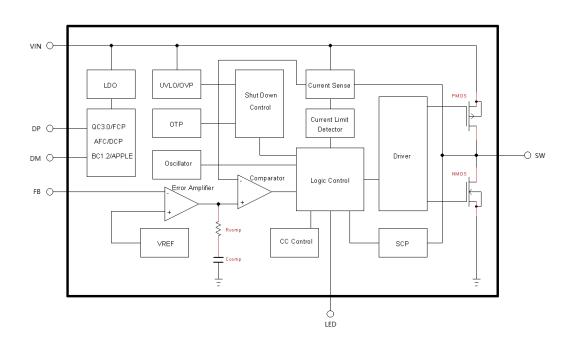
- 车载充电器
- 车载多媒体供电
- 多口 USB 充电器
- 手机快充
- 电池充电器
- 其他


管脚定义

管脚排布	管脚序号	管脚名称	管脚描述
	1	NC	空脚,悬空
TOP VIEW	2	LED	芯片工作状态指示 LED 引脚
(ESOP-8)	3	DP	USB 通信端口 D+
NC 1 8 sw	4	DM	USB 通信端口 D-
DP 3 GND 7 VIN	5	NC	空脚,悬空
DM 4 EP 5 NC	6	FB	输出电压反馈端口
	7	VIN	电源输入端口,应用时建议紧靠该引脚放置电容
	8	SW	输出端口,连接外部电感器
	EP	GND	电源地

产品信息

产品型号	工作频率	推荐电感值	封装形式	工作温度范围
SD3505L	140KHz	33uH	ESOP-8L	-25°C to +105°C
SD3505H	340KHz	10uH	ESOP-8L	-25°C to +105°C


典型应用电路

- * 建议在芯片 VIN 脚旁放置容量为 0.1uF~10uF 的瓷片电容;
- * 在 SW 脚增加肖特基二极管,可提高输出效率,减少芯片发热;
- * 芯片底部散热片需要和 PCB 地线良好接触。

SD3505

内部框圈

绝对最高额定值

参数	符号	最小值	最大值	单位
VIN 脚耐压	Vvin	-0.3	40	V
SW 脚耐压	Vsw	-0.3	40	V
FB 脚耐压	V FB	-0.3	40	V
LED 脚耐压	VLED	-0.3	40	V
DP/DM 脚耐压	V DP/DM	-0.3	6	V
工作温度范围	Тор	-25	105	°C
工作结点温度	Tı	-40	150	°C
焊接温度(10 秒)	T s		280	°C
存储温度范围	Тѕтс	-60	150	°C

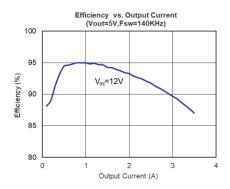
推荐工作条件

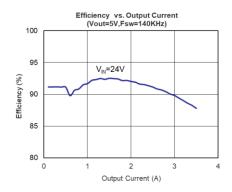
参数	符号	最小值	最大值	单位	
输入电压	VIN	6	32	V	
输出电压	V out	1.23	32	V	
焊接温度(10 秒)	T s		260	°C	
工作温度范围	Тор	-25	105	°C	
* 超过推荐工作条件范围可能会永久损坏芯片					

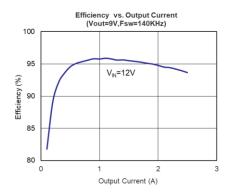
SD3505

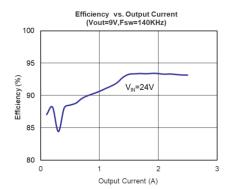
电气参数

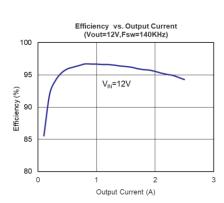
$V_{IN} = 24V$, $V_{OUT} = 5V$, $T_A = 25^{\circ}C$, unless otherwise stated.						
参数	符号	测试条件	最小值	典型值	最大值	单位
最高输入电压	V _{IN_BREAKDOWN}	no switching	40			V
输入欠压锁定电压	V _{UVLO}	V _{IN} falling		6		٧
输入欠压锁定恢复电压迟滞	V _{UVLO_HYST}	V _{IN} rising		50		mV
输入过压保护电压	V _{OVP}	V _{IN} rising		32		٧
输入过压保护恢复电压迟滞	V _{OVP_HYST}	V _{IN} falling		100		mV
待机电流	Ι _Q	V _{оит} =5.1V		1.7		mA
关断电流	I _{SD}	V _{OUT} =0V		70		uA
反馈电压	V _{FB}		1.216	1.23	1.244	V
上管导通电阻	R _{DS(ON)T}	By design		110		mΩ
下管导通电阻	R _{DS(ON)B}	By design		65		mΩ
上管漏电流	I _{LEAK_TOP}	V _{IN} =24V,V _{SW} =0V		1		uA
下管漏电流	ILEAK_BOT	V _{IN} = V _{SW} = 24V		1		uA
输出限流	LIM			2.5		Α
工作频率(L 版本)	Fsw		126	140	154	kHz
工作频率(H 版本)	Fsw		306	340	374	kHz
最大占空比	D _{MAX}			99		%
软启动时间	Tss			500		us
过热保护温度	T _{TSD}			160		°C
过热保护恢复迟滞	T _{TSDHYS}			30		°C

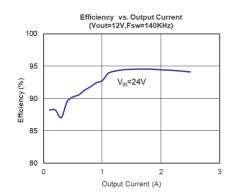

功能描述

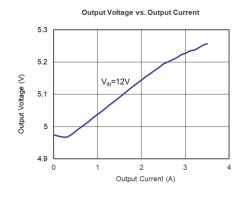

● 同步开关降压转换器

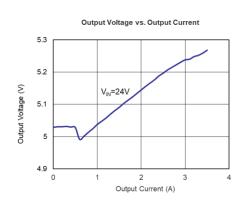

SD3505 集成一个同步开关降压转换器。输入电压范围是 6V~32V,提供固定 5.1V 输出电压版本和可调电压版本,输出电压范围为 3.6V~12V。SD3505 内置功率开关管,工作时的开关频率是 140KHz(L 版)或者 340KHz(H 版)。在 VIN=12V,VOUT=9V/2A 时,转换效率 95%。SD3505 具有软启动功能。SD3505 最大占空比为 99%,支持 VOUT=VIN 的应用环境。


SD3505


http://www.si-soft.cn/ REV: 0.2 4 / 8







● 输出电压线补功能

SD3505 的输出电压有线补功能:输出电流 3A 时,输出电压就会提高约 250mV。

SD3505

● LED 指示灯功能

SD3505 提供一个 LED 引脚作为输出状态指示:

无电压输出时, LED 处于熄灭状态;

手机插入 USB 前,输出为 5V 时,LED 处于微亮状态;

当手机插入后, LED 还可作为手机充满指示灯, 当手机充满电后 LED 会转为微亮状态, 转灯阈值为 130mA ±20mA, 即充电电流大于 130mA 时 led 高亮, 小于 130mA 时微亮。

● 输出快充协议

SD3505支持多种快充协议:

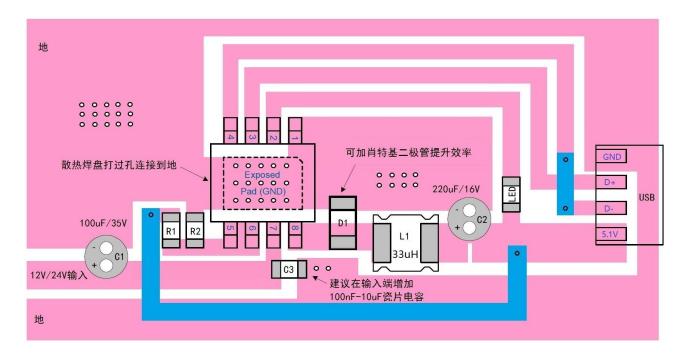
- ▶ 支持DCP苹果2.4A模式
- ▶ 支持BC1.2
- ▶ 支持高通QC2.0和QC3.0协议
- ▶ 支持三星AFC充电协议
- ▶ 支持华为FCP充电协议

● 保护功能

- ▶ SD3505 具备输入过压保护功能,当输入电压超过 32V 时,芯片进入关断模式(no switching),此时芯片可耐受超过 40V 的输入电压。
- ▶ SD3505 有输出短路保护功能,当输出被短路时,芯片进入关断状态(no switching),静态电流降为 70uA, 当短路故障解除并移除负载后,自动恢复输出。
- ➤ SD3505 特有的热保护功能: 当芯片温度升高到 150℃时,进入恒温模式,自动降低输出功率,减小发热,维持 150℃工作结温,如果温度不能控制,继续上升到 160℃,则关断输出,当温度下降到 130℃时,芯片又恢复工作。
- ▶ SD3505 具备输入欠压保护功能,当输入电压低于 6V 时,芯片进入关断模式(no switching),静态电流降为 70uA。
- > SD3505 还输出具备过流保护,输出过压保护,具有极高的可靠性。
- ➤ SD3505 抗静电能力(ESD)超过 5KV(HBM 模式)。

外围元件的选择及注意事项

- 选择正确的输入电容规格非常重要,如果选择不当就可能会在工作过程中出现烧IC等现象,建议选择低 ESR、高ripple的电解电容和MLCC电容并联作为输入电容使用。
- PCB LAYOUT时输入电容尽可能靠近VIN脚,尤其是输入端的MLCC电容必须紧挨VIN脚放置,MLCC电容推 荐选择0.1uF~10uF,电容容量越大越好,用户可根据成本选择。
- FB脚反馈信号必须要经过输出电容滤波后再反馈回芯片,切不可直接接到电感输出端。
- > 考虑到散热问题,芯片的GND脚尽可能连接大面积铜皮用于散热。
- ▶ 对于L版本:选择电感值在22uH~47uH的电感(电感值越大,限流点越大),推荐使用额定电流为5A,Q值大于10的33uH铁硅铝环形电感,出于成本考虑也可以使用镍锌磁芯的工字型电感。

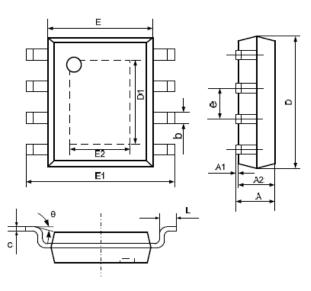

SD3505

http://www.si-soft.cn/ REV: 0.2 6 / 8

SD3505

- 对于H版本:选择电感值在10uH~15uH的电感(电感值越大,限流点越大),推荐使用额定电流为5A,Q值大于10的10uH铁硅铝环形电感,出于成本考虑也可以使用镍锌磁芯的工字型电感。
- ▶ 选择在SW脚增加一个肖特基二极管(推荐SS14)可以提升系统效率,降低芯片发热量。

PCB 布线指南


物料清单

NO.	Position	Description	Quantity	Remark
1	R1	RES, SMD,0603,100KΩ,1%	1	
2	R2	RES, SMD,0603,31.6KΩ,1%	1	
3	C1	EC,100uF/35V, Φ6*7mm, Low ESR	1	
4	C2	EC,220uF/16V, Φ6*7mm, Low ESR	1	
5	C3	CAP, SMD,0603,100nF/50V	0	选用
6	LED	LED, SMD,0603, BLUE	1	
7	D1	SCHOTTKY, SOD123, SK14	0	选用
8	L1	INDUCTANCE,044-125, Φ0.7mm,33uH	1	
9	IC	SD3505	1	_

封装信息

SOP-8EP Package Outline Diagram

SYMBOL		SION IN METERS	DIMENSION IN INCHES		
	MIN	MAX	MIN	MAX	
А	1.350	1.700	0.053	0.067	
A1	0.000	0.100	0.000	0.004	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.007	0.010	
D	4.700	5.100	0.185	0.200	
D1	3.202	3.402	0.126	0.134	
Е	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
E2	2.313	2.513	0.091	0.099	
е	1.270) TYP	0.050) TYP	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	